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Coverage fluctuation and the available line fraction for spheres deposited
on a one-dimensional collector after diffusion under the influence of gravity
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It is known experimentally that the diffusion of colloidal particles prior to their adhesion on a solid-
liquid interface influences strongly the statistical properties of the assembly of deposited particles. How-
ever, in order to perform the simulations taking the diffusion into account, two constraints have been in-
troduced: a maximum number of collisions an adsorbing particle is allowed to make before it is rejected,
and/or the height of a rejection plane above the adsorption plane. Their influence on the variance of the
number of particles distributed over the subsystems, which is used experimentally to discriminate be-
tween different deposition processes, is analyzed in this article. It is shown that great care has to be tak-
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en in a comparison between experimental and simulation data.

PACS number(s): 82.70.Dd, 02.50.—r, 68.10.Jy, 82.65.—i

I. INTRODUCTION

Adhesion of colloidal particles to solid surfaces is an
important process in many areas of physicochemistry and
biology. The deposition process results from the com-
bination of the random motion of the particles in the
liquid before adhesion and a number of deterministic
forces. These latter may influence greatly the
configurations buildup by the adhering particles on the
liquid-solid interface. However, in order to simplify the
description of the complicated interplay of many interac-
tions, an apparently simple model, called the random
sequential adsorption (RSA) model, was proposed at the
end of the 1950s and considerably developed since
[1-11]. In RSA, particles are deposited sequentially and
irreversibly at random positions on a flat surface, with
the condition that no particle overlaps any other. If an
overlap occurs during an adsorption trial, the trial is re-
jected and another position is selected at random. In the
ballistic deposition (BD) model [8,12,13], in contrast, an
incoming particle which hits one already adsorbed is not
immediately rejected but rolls over the fixed one and any
neighboring particles, adsorbing if it reaches a free area
on the surface. It is only discarded if it falls into a trap
formed by two fixed spheres (adsorption on a line) or at
least three fixed spheres (adsorption on a plane).

Despite the fact that many results have been estab-
lished both theoretically and from computer simulations
performed in the framework of these models, their validi-
ty was only poorly established from an experimental
point of view [14-16]. Recent irreversible deposition ex-
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periments for latex beads of different sizes on flat solid
surfaces [17,18] have been performed in order to deter-
mine the domain of validity (if it exists) of these models.
In these experimental studies, two properties of the as-
semblies of deposited particles on the surface were mea-
sured: the radial distribution function of the adsorbed
particles, and the variance ngpt of the distribution of the
number of particles deposited on subsurfaces of small
area taken from the whole collector. Four major con-
clusions could be drawn from this study: (i) the BD model
seems in relatively good agreement with the results corre-
sponding to the deposition of large particles where the
gravitational field plays a major role during the deposi-
tion process. This conclusion had already been obtained
in previous studies [16]. (ii) The radial distribution func-
tion g (r) determined for small particles is well predicted
by the RSA model. On the other hand, even for the
smallest size of particles that was investigated (radius of
the order of 0.6 um, density =~ 1.055 gcm %) the variance
ogxpt of the distribution of particles on small areas of the
surface was not in agreement with the value correspond-
ing to the RSA model. (iii) For particles of intermediate
radii (1 =R =<3 um), neither the RSA nor BD models
could accurately predict the radial distribution function
g(r). (iv) All experimental results reveal that the
diffusion of the particles in the bulk before reaching the
adsorbing surface seems to play an important role, and
even a prime role for some properties such as the vari-
ance aﬁxpt. This seems obvious following the depositon of
a particle under a microscope even without analyzing in
detail the statistical properties of the assembly of deposit-
ed particles.

This latter point had already been recognized for
several years and additional simulation models were
developed in order to take this diffusion process of the
particles in the bulk into account. The first of these
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refined models was the diffusion random sequential ad-
sorption (DRSA) model [19-21]. Since, in the experi-
ments evoked above, the gravity can play an important
role, it was introduced in the DRSA model. This model
was called the DRSAG model (where G stands for gravi-
ty). Another problem arises with the introduction of
gravity: particles submitted to large enough gravitational
force can become stuck in a “‘trap” made of at least three
adsorbed particles. The adsorption trial of a trapped par-
ticle would thus take almost infinite computer time. To
get around this problem, a supplementary rule has been
added in the DRSA algorithm: if the incoming particle
collides k, times with one or several already adsorbed
particles, it is rejected (the adsorption trial has failed).

"It is the goal of this paper to analyze the influence of
the rejection height and of the maximum number of col-
lisions allowed on the adsorption probability of a particle
(usually called the available surface function ®) and on
the variance o2 of the distribution of the number of ad-
sorbed particles on surfaces of small area out of the whole
collector. This latter parameter is especially important
because it can be determined accurately from experi-
ments. The influence of the constraints evoked above will
be examined in the framework of a (1+ 1)-dimensional
[(141)D] model (the particles diffuse in a vertical plane
and adsorb on a horizontal line), less time-consuming
than a (1+2)D model (diffusion in a volume, adsorption
on a horizontal surface). It will be seen that the con-
clusions that can be drawn from a (1+1)D model, al-
though apparently not realistic from the experimental
point of view, apply directly to the natural (1+42)D situa-
tion as far as the questions raised are concerned.

Section I summarizes the method for simulating the
deposition of hard spheres on a line (1D collector) after
diffusion in a vertical plane. In Sec. III A, we show the
variance of the distribution of adsorbed particles on sub-
systems of the collector (line). Its behavior is analyzed on
the basis of the available line fraction which measures the
probability that a particle arriving in the vicinity of the
collector will adsorb on it (Sec. III B). This function is re-
lated to the variance of the number of particles deposited
in the subsystems [17,18], and gives a better insight into
the origin of the results discussed in Sec. III A. We per-
form additional simulations (Sec. III C), similar to those
presented in Sec. IIT A, but changing the simulation con-
ditions according to the analysis of Sec. III B. The con-
clusion of this study (Sec. IV) is that in a model including
diffusion, the diffusion time influences to a large extent
the observed final configuration formed by colloidal parti-
cles at a solid-liquid interface. This contrasts strongly
with the ‘“geometrical models,” i.e., with the RSA and
the BD models.

II. SIMULATIONS

Spherical hard particles of radius R (or diameter
d =2R) diffuse in a vertical plane (2D space) and adsorb
on a one-dimensional (1D) collector, i.e., a line segment
of length L. Periodic conditions are applied at the boun-
daries of this collector. The particles start sequentially
from a point of altitude z =z, =3R, and abscissa x =x,
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chosen randomly between O and L. The particles are sub-
mitted to the random Brownian force due to the mole-
cules of the liquid at absolute temperature 7T and to the
gravitational force F, due to the difference Ap (assumed
to be positive) between the particle density and the liquid
density. At two successive times ¢ and 7 + A¢, the abscis-
sa x and the altitude z are given by

x(t+A)=x(t)+y, V2Ar , (1a)
z(t +At)=z(t)—R**At+y,V2Ar , (1b)

where the length unit is R and the time unit is R%/D.
The time interval At is chosen in such a way that the
mean displacement at each step represents a small part of
the radius. All physical parameters characterizing the
process are contained in the unique parameter R*
[22-25] defined by

1/4 1/4
kT 3kT

Note that R ** coincides with the Péclet number Pe [26].
In Eq. (2), k represents the Boltzmann constant, g the ac-
celeration of gravity, and D the diffusion coefficient of a
sphere in a liquid of viscosity n (D =kT /6mmR); v, and
v, are normal random deviates of mean equal to O and
standard deviation equal to 1 [27]. With the numerical
values Ap=0.055 gcm 3, g=9.81 ms ™2, and T=300 K
kept constant throughout this study, and typical for ex-
periments performed with polystyrene latex particles, the
relation between R* and R (expressed in micrometers) is
R*=0.859R.

When z becomes equal to R, the particle is adsorbed
permanently on the line, and the movement of an addi-
tional particle is started. If, during its diffusion, a parti-
cle collides with a preadsorbed particle, it is drawn back
to the position it had a time At before the collision, and a
new step is tried. In order to save computer time, a max-
imum number of collisions k, (equal to 10000) was al-
lowed for each particle. After this number was reached,
the particle was discarded and another one was started.
We have verified that increasing this number induces no
significant change in the jamming limit coverage 6( oo ).
For instance, for R =4 um (i.e., R*=3.438), we ob-
tained 6( o0 )=0.80441+0.0027, 0.8027+0.0027, and
0.8030%0.0026 for k£, =10000, 20 000 and 30 000, respec-
tively. On the other hand, light particles are not strongly
pulled downward by the gravitational force, and may
therefore diffuse at high altitude before adsorbing eventu-
ally. A rejection height of SR was adopted in order to
avoid too large a waste of computer time. It was demon-
strated in a previous paper [25] that the latter limitation
also did not significantly influence the value of 6( o ).

In the framework of the model described above
(diffusion RSA with gravity, DRSAG), the coverage of
lines (L /R =2700) was performed with spherical parti-
cles of various radii: R (um)=0.6 (sample size: 250 lines
covered), 1.02 (250), 1.2 (250), 1.5 (250), 1.75 (500), 2
(500), 2.5 (1000), 3 (1000), 4 (500), and 6 (1000). In addi-
tion, we simulated also the coverage of 2000 lines follow-
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ing the rules of the usual RSA model [3] and of the ballis-
tic deposition (BD) model [8.] These latter run much fas-
ter than the DRSAG since the diffusing trajectory is not
taken into account. For this reason the results obtained
with the DRSAG model were limited to coverages be-
tween 0.4 and 0.6, less than the saturation coverage in
BD (0.80865. . .) as well as the RSA jamming coverage
(0.74759. . .) [8].

Each line was subdivided into v subsystems, each of
length [ =L /v. For a given coverage 6, or a given num-
ber N of spheres adsorbed on the whole line, the number
n of spheres located in each subsystem is a random vari-
able with mean {7 ) given by

(n)Y=N/v=01/d (3)

and variance o2, where sim stands for simulated. If no
rejection occurred during the deposition process, the
variance of the number of particles deposited in the v
subsystems would equal the binomial variance o3,
defined by

v—1

Ugin = < n ) (4)
The binomial variance depends on the number of subsys-
tems and linearly on their length, at a given coverage [see
also Eq. (3)]. We assume that o2 behaves similarly
whatever the mechanism involved in the coverage

l

v—I1
2= EYO+Y1

) (5)

where y, and y, are two functions of 6 only. The partic-
ular case of the binomial variance is recovered if y,=6
and y, =0. The additional term y, accounts for the fact
that, after a collision, a particle during its diffusion may
adsorb in some subsystem other than that containing the
particle first hit (border effects). Introducing the relation
v=L/l into Eq. (5) yields an expression for o, which
explicitly displays its dependence on /. The analysis of
the variance is, however, rendered much easier if one
defines a corrected variance o2 by

2.V

!
S %sm= Yoty (6)

which is a linear function of /, of slope y, and intercept
»1 (see Sec. III A). Furthermore, one can also define a re-
duced variance y by a simple transformation of Eq. (6):

y=%02=yo+%y1 . @)

This equation shows clearly that y, represents the contri-
bution to the reduced variance which is independent of /,
i.e., independent of the existence of border effects (this y,
is equivalent to its 2-dimensional counterpart introduced
in Ref. [28]). Using Egs. (3), (6), and (7), we show finally
that

2
Yo o? v Osim

e (n)=1/—-1 (n)

in the limit //d — . Equation (8) is important because

(®)
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it constitutes the link between the relative variance
(05n/{n)) or the related quantity y,/8 observed in the
simulation, and theoretical expressions of ¢?/{n) ob-
tained on infinite lines, subdivided into an infinite number
of subsystems free of border effects. Note also that if the
coverage process follows a binomial law, Eq. (8) leads to
the simple relation y,/60=1.

II1. RESULTS

A. Variance

As indicated above, between 250 and 1000 lines were
covered up to a given coverage (between 0.4 and 0.6), de-
pending on the radius of the particle; the length-to-radius
ratio was kept fixed (L /R =2700). From the position of
all adsorbed particles, we derived the corrected variance
o? [Eq. (6)] of the number of particles located in the v
subsystems constituting the whole collector (19 values of
v were used, ranging from 16 up to 1024). This variance
is represented in Fig. 1 as a function of //d (=1/2R) for
R =2 um taken as an example, for a series of values of
the coverage (many more values of 6 were considered, but
not represented, for the sake of clarity). As can be seen,
the linearity is very good in all cases. This linearity was
also observed for all other particle radii. The hypothesis
of linearity expressed by Eq. (6) is thus verified.

From the plots of o one derives y, as a function of 6,
for the DRSAG model, as well as for the RSA model and
for the BD model (Fig. 2). The curves corresponding to
R =6, 4, 3, and 2.5um are identical within the statistical
uncertainties, and fall approximately onto the ballistic
deposition curve. That particles characterized by a large

l/d

FIG. 1. Corrected variance o? [Eq. (7)] as a function of the
ratio of the length / of a subsystem to the diameter d of the
spheres. Each set of data points corresponds to a given cover-
age 6: 0.0659 (0), 0.1392 (@), 0.2124 (V), 0.2856 (w), 0.3589
(O), 0.4321 (M), 0.5420 (A ), and 0.6006 (A ). The continuous
lines are least-squares fits of a linear function to the data derived
from the simulations. The linearity of o vs I /d shown here for
particles of radius 2 um was verified for all particle radii used in
this study.
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FIG. 2. Asymptotic part y, of the reduced variance y [Eq.
(8)] as a function of the coverage 0, for a series of particle radii:
R=6(0),4(®),3(V),25(w),2(0), 1.75 (M), 1.5 (A), 1.2
(A), 1.02 (), and 0.6 pum (4). The maximum number of col-
lisions was set to k,=10000, and the rejection line at a height
z,=5R. The results corresponding to the random sequential ad-
sorption (RSA) model (dashed line) and to the ballistic deposi-
tion (BD) model (solid line) are drawn for comparison.

value of R * behave nearly as ballistic ones is a priori not
surprising. Indeed, if such a particle collides with a
preadsorbed one, it diffuses at the surface of the fixed par-
ticle (analogous of the rolling in BD), and adsorbs in its
vicinity if enough room is available. If the adsorption is
not possible, due to the presence of a second fixed particle
which renders the gap too narrow, the diffusing particle
stays trapped between the two fixed ones and is finally re-
jected after it makes a preset number of collisions (10 000
in the simulations leading to the results of Fig. 2). How-
ever, this rejection mechanism becomes gradually less
efficient when the particle becomes lighter. This greater
ease of light particles to escape from a trap is expected to
lead to y, values representative of the binomial filling of
the collector (y,=0). Figure 2 clearly shows this tenden-
cy for R =2 and 1.75 pm. The main problem in the in-
terpretation of Fig. 2 arises from the fact that for
R =1.5, 1.2, 1.02, and 0.6 pm, y, does not follow the
trend suggested by the two preceding curves. At this
point, the second rejection mechanism must be invoked.
If a particle during its diffusion attains an altitude of 5R,
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it is rejected, as discussed in Sec. II. This was made to
avoid very long diffusion times, hence to save computer
time. However, it is now clear that this rule in fact
affects the variance of the coverage. If we waited long
enough, the particle would eventually adsorb in the sub-
system where it was from the beginning of its history.
This statement relates to asymptotic subsystems ([ — o ).
But if the particle is rejected (too early) and another one
started, the latter will probably start and end (if not also
rejected) in another subystem. Therefore, y, for the
lightest particles deviates again from the binomial law
Yo =20, and approaches the curve obtained in RSA, where
the rejection occurs as soon as the first collision is detect-
ed.

From this first analysis it can be concluded that if the
allowed number of collisions could be unlimited, and if
the rejection line at height SR could be removed, each
particle would adsorb as long as the collector had not
reached its saturated state. In other words, y, would
equal 0 for the whole filling process. Nevertheless, since
the computation is very long (several weeks, or even
months for the light particles, R* <1), it is not easy to
verify this prediction on the basis of variance simulations.
We shall therefore first use the available line fraction to
test the conclusion drawn above.

B. Available line fraction

The available line fraction ®(8) is here taken in its pro-
babilistic sense; i.e., ®(0) measures the probability for a
particle starting from the height z =z, above the collec-
tor, characterized by the coverage 6, to adsorb. In
DRSAG, the diffusive trajectory of the particle may
reach a point located at z =z,. By definition, the particle
is thus discarded. This may even occur when the collec-
tor is empty, unless z, = . Hence ®(0) is generally not
equal to 1, whereas it is strictly equal to 1 in the RSA as
well as in BD. The observed available line fraction ®'(9),
which can be compared to its RSA and BD counterparts,
must therefore be normalized in such a way that ®
(0)=1. Hence the available line fraction must be
redefined by ®(0)=®'(0)/P'(0), where @'(0)=[1
+exp(—2Pe)]”! in the present simulation conditions
(z,=3R,z,=5R) [29]. On the other hand, once at least
one particle is already adsorbed, the incoming particle
may experience k, collisions before reaching the adsorb-
ing line. It is then also rejected, although it might have
adsorbed in a neighboring accessible gap if k, had been
larger. This simple qualitative analysis shows that the
two constraints must have a substantial influence on the
evaluation of the available line fraction. This problem is
discussed in some detail in Secs. III B 1 and III B 2.

1. Influence of the maximum number of collisions allowed

The influence of the maximum number of collisions al-
lowed before rejection of the diffusing particle (k,) will be
illustrated on the basis of two examples (R =6 and 1.75
pm) for which the influence of gravity is strong enough to
render the rejection line at height 5R inoperative
[®'(0)=1 for R=1.75 and 6 um). Figure 3 shows ®(6)
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FIG. 3. Available line fraction ® as a function of the cover-
age 0 for different values of the maximum number k, of col-
lisions allowed in the DRSAG model [k,=1 (0), 10° (@),
10* (V), 10° (w)] before rejection of a diffusing particle of ra-
dius R =6um (R*=~5.15). Sample sizes: 10000 lines of length
L =800 R. The theoretical values of ® for the RSA model
(dashed line) coincide with the simulated results for k,=1,
whereas the theoretical values of @ for the BD model (solid line)
agree with the simulated results for k, =10* and 10°.

as a function of 6 for different values of k, and R =6 um.
For k,=1, i.e., rejection at the first collision, our simulat-
ed values of ®(6) agree with the theoretical series expan-
sion of Pgga [8,9]:

1,,,2 7 17
@ =1-20+-0+ =0 +-—0"+—-06°
rsa(0) 0+ 0+ 50+ o0+ 0

1253 ¢, 3851
+ 12960 o+ 44 100
When k, is increased, ®(0) also increases, since the prob-
ability of adsorption depends on the number of collisions
that the particle is allowed to make before rejection.
Over the coverage investigated in Fig. 3, when k, reaches
104, ®(6) becomes equal to ®yp, given by [8]

26 ;245 . 4511
TR
_ 55517 6 2539177

2592 52920

Further increasing k, to 10° does not lead to any visible

0+0(6%) . 9)

Pyp(0)=1— 26+ 6°

6%+ 0'+0(6%) . (10)
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difference. This means that 10* collisions are sufficient
for most particles (if not all) to reach the surface even in
the case where collisions occur, if there is sufficient place
near the particle hit. In contrast, 10* collisions are
insufficient for this particle to escape from a trap. The
same conclusion remains true when k, =10°. In order for
a “heavy” particle to escape from a trap, the number of
collisions would be so large as to render it impossible to
simulate such an event. From this example, it may be
concluded that DRSAG mimics the BD model if an ap-
propriate maximum number of collisions is chosen. Nev-
ertheless, it also suggests also that the BD model is not a
true limit model of the DRSAG because in principle the
adsorption probability can be rendered arbitrarily high
by simply allowing more and more collisions, even
though this is not practical. This conclusion appears also
if one determines ®(8) for particles of radius
R =1.75 um, ie., R*~1.5. Then, even for k,=10%
D(0) lies above Py, (0) for all values of 0 in the range
[0-0.2] explored, and increases further when k, — oo.

2. Influence of the height of the rejection line

In order to examine the role of the top rejection line,
we use particles of various sizes (R =1.2, 1.5, 1.75, 2, and
2.5 pm, corresponding to R *~1.03, 1.29, 1.50, 1.72, and
2.15, respectively), which have a decreasing probability of
reaching the rejection altitude, set initially to SR. We
measured the mean number of trials {n,) necessary to
reach the number n, of adsorbed particles corresponding
to a coverage of 0.2, as a function of the rejection height
z, when k, =10 This is an integrated quantity, related
to the available line fraction, which requires only small
samples of lines to provide reliable results. The ratio
n,/{n,) is displayed in Fig. 4, which clearly shows that
the value of z, is a parameter of growing importance
when R * decreases. In particular, it can be seen that for
z,/R =5, a non-negligible part of the particles with
R =1.2 um are rejected at the upper line, while the ad-
sorption efficiency becomes practically equal - to 1
(n,/{n,)=~1) when z,/R >10. This is also due to the
fact that k,=10* is not a strong constraint for
R =1.2 um. Conversely, for heavier particles (e.g.,
R =2 um) a maximum of 10* collisions represents an im-
portant constraint. The asymptotic value of n, /{n,) on
the one hand is reached already for z, /R =4, but on the
other hand does not equal 1. These examples illustrate
further that the DRSAG model behaves as a binomial
filling procedure as soon as the trajectories of the
diffusing particles are not interrupted too quickly.

C. Variance without rejection line

As a consequence of the observations discussed above,
the simulations have been repeated removing the top re-
jection line, i.e., z, = o0, while keeping k, fixed at 10 000.
Ideally k, should also be raised to infinity, but this would
lead to a prohibitive computation time and, in practice,
render the results impossible to obtain for the heaviest
particles used in the present study.

For R ranging from 6 to 2.5 um, the values of y, form
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nearly a single curve within the statistical uncertainties
(Fig. 5). For a fixed value of 6, when R decreasing from
2.5 to 1.02 um, y, increases regularly, according to the
analysis given in Secs. IIIA and IIIB. The case
R =0.6 um was not reanalyzed since the computation
time is very long, especially when no limitation is im-
posed on the height the particles can reach. For R be-
tween 1 and 2 um, the effect of the remaining constraint
k,=10000 is still visible. Two facts contribute to the
departure from the binomial law y,=6. On the one
hand, the heavier the particle, the more collisions are
necessary to escape from a trap; on the other hand, when
the coverage increases, more and more traps are formed,
and in addition they may constitute clusters of traps.
Then, even though a particle can escape from a first trap,
it may immediately fall into a second one, and so on. In
this way, even the lightest particles are liable to be reject-
ed after 10000 collisions before touching the collector.
Obviously, the number of visits to successive traps in-
creases when R * decreases, provided that the maximum

1.0 4

0.9

0.8

0.7

a

n_/<n,>

0.6

0.5

0.4

0.3 L
0.0 0.1 0.2

R/zr

FIG. 4. Ratio n,/{n,) of the number of adsorbed particles
to the corresponding mean number of trial particles for obtain-
ing a coverage of 6=0.2, as a function of R /z,, for particle ra-
dii R=1.2 (0), 1.5 (@), 1.75 (V), 2 (¥), and 2.5 um (O). Sam-
ple sizes: 100 lines of length L =800 R. The maximum number
of collisions k, is fixed at 10*. The error bars correspond to
95%-confidence intervals. The lines represent fits of the empiri-
cal function n,/{n,)=a{l—exp[ —b(z,/R —3)]} to the data,
where a and b are free parameters.
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FIG. 5. Asymptotic part y, of the reduced variance y [Eq.
(8)] as a function of the coverage 6 for particle radii R =6 (O),
4(@),3(V),25(w),2(0),1.75(m),1.5(A),1.2(A), and 1.02
um (). The maximum number of collisions was set to
k,=10000 and the rejection line at an infinite height. For com-
parison the results corresponding to the random sequential ad-
sorption (RSA) model (dashed line) and to the ballistic deposi-
tion (BD) model (solid line) are also drawn.

number of collisions was the same whatever R *. This ex-
plains why y, deviates from the binomial prediction at
6=0.32 for R =1.02 um, whereas this departure occurs
already at 6~=0.25 for R=1.2 pum.

It might be interesting in principle to perform further
simulations in order to study how y, approaches the bi-
nomial law when k, increases. This would, however, re-
quire a great deal of computer time, and add little to our
understanding of the physical properties of the systems.

IV. DISCUSSION AND CONCLUSION

This article considers the irreversible adsorption of
spheres (representing colloidal particles) on a one-
dimensional collector, after diffusion in a two-
dimensional liquid. In addition to the random force ex-
erted by the liquid molecules onto the particles, the parti-
cles were also submitted to a deterministic force, namely
their net weight in the liquid, i.e., Archimedean force
minus weight (DRSAG model). This study was aimed at
the determination of the variance of the number of parti-
cles distributed in subsystems constituting the whole col-
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lector as it is determined experimentally [16—18]. It was
clearly demonstrated that any constraint resulting in the
limitation of the diffusion time may substantially modify
this variance. In contrast to the familiar random sequen-
tial adsorption and ballistic deposition models, the result-
ing characteristics of the particle configuration buildup
with the DRSAG model are no longer dependent on
geometrical rules alone, but depend also on time limiting
rules. In the absence of such rules, the variance of the
number of particles distributed over subsystems is given
by the binomial law. This, however, cannot correspond
to a real physical case. Indeed, it implies that the
diffusion time of an adsorbing particle before it touches
the adsorption plane can become infinite, whereas each
experiment is characterized by a time scale which is
finite. For deposition experiments, one can assume that
this characteristic time corresponds roughly to the mean
time between the successive deposition of two particles
on a surface of area unity if it is totally uncovered.
Indeed, in our model, we always assume sequential ad-
sorption and never consider the diffusion of two particles
at the same instant. This time will thus be a function of
various parameters such as the concentration of the par-
ticles in the bulk, the radius of the particles, etc. Due to
the influence of these parameters on the final simulation
results, great care has to be taken in order to be able to
compare the results issued from the simulation with the
experimental results. This has not yet been done, and
more investigations are needed to better understand these
subtle effects.
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Finally, it must also be emphasized that our findings,
although obtained in the special case of a one-
dimensional collector, extend without restriction to the
usual experimental case of an adsorbing surface (two-
dimensional collector). Furthermore, the results obtained
here confirm those presented in previous papers [17,18],
namely that the relative variance and the available sur-
face function, or the accessible line fraction, behave in a
similar way, at least for low coverage:

a? ;

——=0+0(6") , (11)

(n)
where the exponent i tends to infinity when the diffusion
time tends itself to infinity. For an unlimited diffusion
time, i.e., in the special case where the binomial law
would rigorously apply, both quantities would be exactly
equal to one (0?/{n ) =®=1), whatever the coverage, as
long as saturation is not achieved.
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